提到Netty首当其冲被提起的肯定是支持它承受高并发的线程模型,说到线程模型就不得不提到NioEventLoopGroup这个线程池,接下来进入正题。

1. 线程模型

首先来看一段Netty的使用示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
package com.wrh.server;

import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.*;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;

public final class SimpleServer {

public static void main(String[] args) throws Exception {
EventLoopGroup bossGroup = new NioEventLoopGroup(1);
EventLoopGroup workerGroup = new NioEventLoopGroup();

try {
ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.handler(new SimpleServerHandler())
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
public void initChannel(SocketChannel ch) throws Exception {
}
});

ChannelFuture f = b.bind(8888).sync();

f.channel().closeFuture().sync();
} finally {
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
}

private static class SimpleServerHandler extends ChannelInboundHandlerAdapter {
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception {
System.out.println("channelActive");
}

@Override
public void channelRegistered(ChannelHandlerContext ctx) throws Exception {
System.out.println("channelRegistered");
}

@Override
public void handlerAdded(ChannelHandlerContext ctx) throws Exception {
System.out.println("handlerAdded");
}
}
}

下面将分析第一、二行代码,看下NioEventLoopGroup类的构造函数干了些什么。其余的部分将在其他博文中分析。

1
2
EventLoopGroup bossGroup = new NioEventLoopGroup(1);
EventLoopGroup workerGroup = new NioEventLoopGroup();

从代码中可以看到这里使用了两个线程池bossGroupworkerGroup,那么为什么需要定义两个线程池呢?这就要说到Netty的线程模型了。

img

Netty的线程模型被称为Reactor模型,具体如图所示,图上的mainReactor指的就是bossGroup,这个线程池处理客户端的连接请求,并将accept的连接注册到subReactor的其中一个线程上;图上的subReactor当然指的就是workerGroup,负责处理已建立的客户端通道上的数据读写;图上还有一块ThreadPool是具体的处理业务逻辑的线程池,一般情况下可以复用subReactor,比我的项目中就是这种用法,但官方建议处理一些较为耗时的业务时还是要使用单独的ThreadPool

2. NioEventLoopGroup构造函数

NioEventLoopGroup的构造函数的代码如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public NioEventLoopGroup() {
this(0);
}

public NioEventLoopGroup(int nThreads) {
this(nThreads, null);
}

public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory) {
this(nThreads, threadFactory, SelectorProvider.provider());
}

public NioEventLoopGroup(
int nThreads, ThreadFactory threadFactory, final SelectorProvider selectorProvider) {
super(nThreads, threadFactory, selectorProvider);
}

NioEventLoopGroup类中的构造函数最终都是调用的父类MultithreadEventLoopGroup如下的构造函数:

1
2
3
protected MultithreadEventLoopGroup(int nThreads, ThreadFactory threadFactory, Object... args) {
super(nThreads == 0? DEFAULT_EVENT_LOOP_THREADS : nThreads, threadFactory, args);
}

从上面的构造函数可以得到 如果使用EventLoopGroup workerGroup = new NioEventLoopGroup()来创建对象,即不指定线程个数,则netty给我们使用默认的线程个数,如果指定则用我们指定的线程个数。

默认线程个数相关的代码如下:

1
2
3
4
5
6
7
8
static {
DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt(
"io.netty.eventLoopThreads", Runtime.getRuntime().availableProcessors() * 2));

if (logger.isDebugEnabled()) {
logger.debug("-Dio.netty.eventLoopThreads: {}", DEFAULT_EVENT_LOOP_THREADS);
}
}

而SystemPropertyUtil.getInt函数的功能为:得到系统属性中指定key(这里:key=”io.netty.eventLoopThreads”)所对应的value,如果获取不到获取失败则返回默认值,这里的默认值为:cpu的核数的2倍。

结论:如果没有设置程序启动参数(或者说没有指定key=”io.netty.eventLoopThreads”的属性值),那么默认情况下线程的个数为cpu的核数乘以2。

继续看,由于MultithreadEventLoopGroup的构造函数是调用的是其父类MultithreadEventExecutorGroup的构造函数,因此,看下此类的构造函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
protected MultithreadEventExecutorGroup(int nThreads, ThreadFactory threadFactory, Object... args) {
if (nThreads <= 0) {
throw new IllegalArgumentException(String.format("nThreads: %d (expected: > 0)", nThreads));
}

if (threadFactory == null) {
threadFactory = newDefaultThreadFactory();
}

children = new SingleThreadEventExecutor[nThreads];
//根据线程个数是否为2的幂次方,采用不同策略初始化chooser
if (isPowerOfTwo(children.length)) {
chooser = new PowerOfTwoEventExecutorChooser();
} else {
chooser = new GenericEventExecutorChooser();
}
//产生nTreads个NioEventLoop对象保存在children数组中
for (int i = 0; i < nThreads; i ++) {
boolean success = false;
try {
children[i] = newChild(threadFactory, args);
success = true;
} catch (Exception e) {
// TODO: Think about if this is a good exception type
throw new IllegalStateException("failed to create a child event loop", e);
} finally {
//如果newChild方法执行失败,则对前面执行new成功的几个NioEventLoop进行shutdown处理
if (!success) {
for (int j = 0; j < i; j ++) {
children[j].shutdownGracefully();
}

for (int j = 0; j < i; j ++) {
EventExecutor e = children[j];
try {
while (!e.isTerminated()) {
e.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS);
}
} catch (InterruptedException interrupted) {
Thread.currentThread().interrupt();
break;
}
}
}
}
}
}

该构造函数干了如下三件事:

1、产生了一个线程工场:threadFactory = newDefaultThreadFactory();

1
2
3
4
5
6
7
8
9
MultithreadEventExecutorGroup.java
protected ThreadFactory newDefaultThreadFactory() {
return new DefaultThreadFactory(getClass());//getClass()为:NioEventLoopGroup.class
}

DefaultThreadFactory.java
public DefaultThreadFactory(Class<?> poolType) {
this(poolType, false, Thread.NORM_PRIORITY);
}

2、根据线程个数是否为2的幂次方,采用不同策略初始化chooser

1
2
3
private static boolean isPowerOfTwo(int val) {
return (val & -val) == val;
}

3、 产生nTreads个NioEventLoop对象保存在children数组中 ,线程都是通过调用newChild方法来产生的。

1
2
3
4
5
@Override
protected EventExecutor newChild(
ThreadFactory threadFactory, Object... args) throws Exception {
return new NioEventLoop(this, threadFactory, (SelectorProvider) args[0]);
}

这里传给NioEventLoop构造函数的参数为:NioEventLoopGroup、DefaultThreadFactory、SelectorProvider。

3. NioEventLoopGroup构造函数分析

既然上面提到来new一个NioEventLoop对象,下面我们就看下这个类以及其父类。

1
2
3
4
5
6
7
8
NioEventLoop(NioEventLoopGroup parent, ThreadFactory threadFactory, SelectorProvider selectorProvider) {
super(parent, threadFactory, false);
if (selectorProvider == null) {
throw new NullPointerException("selectorProvider");
}
provider = selectorProvider;
selector = openSelector();
}

继续看父类 SingleThreadEventLoop的构造函数

1
2
3
protected SingleThreadEventLoop(EventLoopGroup parent, ThreadFactory threadFactory, boolean addTaskWakesUp) {
super(parent, threadFactory, addTaskWakesUp);
}

又是直接调用来父类SingleThreadEventExecutor的构造函数,继续看

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
protected SingleThreadEventExecutor(
EventExecutorGroup parent, ThreadFactory threadFactory, boolean addTaskWakesUp) {

if (threadFactory == null) {
throw new NullPointerException("threadFactory");
}

this.parent = parent;
this.addTaskWakesUp = addTaskWakesUp;//false

thread = threadFactory.newThread(new Runnable() {
@Override
public void run() {
boolean success = false;
updateLastExecutionTime();
try {
//调用NioEventLoop类的run方法
SingleThreadEventExecutor.this.run();
success = true;
} catch (Throwable t) {
logger.warn("Unexpected exception from an event executor: ", t);
} finally {
for (;;) {
int oldState = STATE_UPDATER.get(SingleThreadEventExecutor.this);
if (oldState >= ST_SHUTTING_DOWN || STATE_UPDATER.compareAndSet(
SingleThreadEventExecutor.this, oldState, ST_SHUTTING_DOWN)) {
break;
}
}
// Check if confirmShutdown() was called at the end of the loop.
if (success && gracefulShutdownStartTime == 0) {
logger.error(
"Buggy " + EventExecutor.class.getSimpleName() + " implementation; " +
SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called " +
"before run() implementation terminates.");
}

try {
// Run all remaining tasks and shutdown hooks.
for (;;) {
if (confirmShutdown()) {
break;
}
}
} finally {
try {
cleanup();
} finally {
STATE_UPDATER.set(SingleThreadEventExecutor.this, ST_TERMINATED);
threadLock.release();
if (!taskQueue.isEmpty()) {
logger.warn(
"An event executor terminated with " +
"non-empty task queue (" + taskQueue.size() + ')');
}

terminationFuture.setSuccess(null);
}
}
}
}
});

taskQueue = newTaskQueue();
}
protected Queue<Runnable> newTaskQueue() {
return new LinkedBlockingQueue<Runnable>();
}

主要干如下两件事:

1、利用ThreadFactory创建来一个Thread,传入了一个Runnable对象,该Runnable重写的run代码比较长,不过重点仅仅是调用NioEventLoop类的run方法。

2、使用LinkedBlockingQueue类初始化taskQueue 。

其中,newThread方法的代码如下:

DefaultThreadFactory.java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
@Override
public Thread newThread(Runnable r) {
Thread t = newThread(new DefaultRunnableDecorator(r), prefix + nextId.incrementAndGet());

try {
//判断是否是守护线程,并进行设置
if (t.isDaemon()) {
if (!daemon) {
t.setDaemon(false);
}
} else {
if (daemon) {
t.setDaemon(true);
}
}
//设置其优先级
if (t.getPriority() != priority) {
t.setPriority(priority);
}
} catch (Exception ignored) {
// Doesn't matter even if failed to set.
}
return t;
}

protected Thread newThread(Runnable r, String name) {
return new FastThreadLocalThread(r, name);
}

FastThreadLocalThread.java

1
2
3
public FastThreadLocalThread(Runnable target, String name) {
super(target, name);// FastThreadLocalThread extends Thread
}

到这里,可以看到底层还是借助于类似于Thread thread = new Thread(r)这种方式来创建线程。

关于NioEventLoop对象可以得到的点有,初始化了如下4个属性。

1、NioEventLoopGroup (在父类SingleThreadEventExecutor中)

2、selector

3、provider

4、thread (在父类SingleThreadEventExecutor中)

4. 总结

关于NioEventLoopGroup,总结如下

1、 如果不指定线程数,则线程数为:CPU的核数*2

2、根据线程个数是否为2的幂次方,采用不同策略初始化chooser

3、产生nThreads个NioEventLoop对象保存在children数组中。

可以理解NioEventLoop就是一个线程,线程NioEventLoop中里面有如下几个属性:

1、NioEventLoopGroup (在父类SingleThreadEventExecutor中)

2、selector

3、provider

4、thread (在父类SingleThreadEventExecutor中)

更通俗点就是:NioEventLoopGroup就是一个线程池,NioEventLoop就是一个线程。NioEventLoopGroup线程池中有N个NioEventLoop线程。


本站由 卡卡龙 使用 Stellar 1.29.1主题创建

本站访问量 次. 本文阅读量 次.